On cycle decompositions with a sharply vertex transitive automorphism group

نویسنده

  • Marco Buratti
چکیده

In some recent papers the method of partial differences introduced by the author in [4] was very helpful in the construction of cyclic cycle systems. Here we use and describe in all details this method for the more general purpose of constructing cycle decompositions with a sharply vertex transitive automorphism group not necessarily cyclic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Bowtie Decompositions of the Complete Graph

Given a bowtie decomposition of the complete graph Kv admitting an automorphism group G acting transitively on the vertices of the graph, we give necessary conditions involving the rank of the group and the cycle types of the permutations in G. These conditions yield non–existence results for instance when G is the dihedral group of order 2v, with v ≡ 1, 9 (mod 12), or a group acting transitive...

متن کامل

Two-geodesic transitive graphs of prime power order

In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be   $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...

متن کامل

Sharply Transitive 1-Factorizations of Complete Multipartite Graphs

Given a finite group G of even order, which graphs Γ have a 1−factorization admitting G as automorphism group with a sharply transitive action on the vertex-set? Starting from this question, we prove some general results and develop an exhaustive analysis when Γ is a complete multipartite graph and G is cyclic.

متن کامل

On sharply vertex transitive 2-factorizations of the complete graph

We introduce the concept of a 2-starter in a groupG of odd order.We prove that any 2-factorization of the complete graph admitting G as a sharply vertex transitive automorphism group is equivalent to a suitable 2-starter in G. Some classes of 2-starters are studied, with special attention given to those leading to solutions of some Oberwolfach or Hamilton–Waterloo problems. © 2005 Elsevier Inc....

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004